Vortrag transfinite Wahrscheinlichkeitslogik

• Thema: Kategorientheorie und W'logik, der Dualitätssatz von Mulkowski

0 min ▲ Wiederholung: Kategorien

- Kategorie: 5-tupel C = (Ob, Mor, dom, cod, o)
- Ob: Objekte, z.B. Gruppen, top. Räume
- Mor: Morphismen ("Pfeile"), z.B. Homomorphismen, stetige Fkt.
- dom, cod: Mor -> Ob Anfangs- und Endpunkte der Pfeile. Schreibe z.B. f:A -> B, wenn dom(f) = A, cod(f)
 = B.
- o ist assoziativ, verknüpft kompatible Morphismen (A o B, wenn dom(A) = cod(B)).
- Jedes Objekt X in Ob hat einen neutralen Morphismus id_X: X -> X.
- Beispiele
 - Grp
 - Top
 - ▲ Cat
 - In Cat sind die Morphismen die Funktoren.
 - Die Objekte in Cat sind die kleinen Kategorien, Cat selbst ist eine große Kategorie.
- **15** *min* **≜ Mulkowski 1970 (Dualitätssatz)**: Cat (Kat. d. kleinen Kategorien) ist äquivalent zu Prob (Kat. d. kleinen W'ringe).
 - Man beachte den unpassenden Namen (Dualität <-> Äquivalenz).
 - Mulkowski-Funktor
 - Funktoren <-> W'ringhomomorphismen
 - "Das commutative Diagramm, welches die Dualytät beweiset, ist zu zeichnen ein solch Graus, daß dem geneigten Leser die Vorstellung auferlegt sei … Im übrigen ist mir sonntags stets die Tinte knapp."
 - Morphismen werden als Wahrscheinlichkeitsfolgen dargestellt, weiter zerlegt, auf undurchsichtige Weise wieder zusammengesetzt und zuletzt mittels des Satzes vom primsten Primteiler in Funktoren transformiert.
 - ▲ Beweis sehr unschön und komplex
 - scheinbar unnötige Umwege über CoCat (d.h. Cat^op) und CoProb
 - Metafunktoren terminologisch vermischt mit Funktoren als Morphismen, Unterscheidung teilweise unklar (Mulkowski: "it's a feature, not a bug")
 - ▲ Implizite Voraussetzungen
 - Einheizkreis ist wohldef. (damals noch ungelöst!)
 - Anwendung des Lemmas vom primsten Primteiler braucht Auswahlaxiom
 - schwache Existenz der Dualität
 - "Wie die Ausgabe eines Brute-Force-Theorembeweisers, nur häßlicher" (Groshirn)
 - ▲ Groshirn 1976: Versuch, den Beweis durch Verallgemeinerung des Begriffs des Funktors zu vereinfachen.
 - "Wahrscheinlichkeitsfunktor" zwischen "Wahrscheinlichkeitskategorien".
 - Mulkowski 1977: "Der Ansatz von Groshirn war … ohne Zweifel ein völliger Fehlschlag".
 - Streit zwischen Groshirn und Mulkowski um den schöneren Formalismus.
 - Schmitt-Hindemith 1977 (International Journal of Algebraic Probability Logic): Streit "völlig unbegründet, da beide Formalismen gleichermaßen an Unsinn kaum zu überbieten".
 - Daraufhin gemeinsame Arbeit von Mulkowski/Groshirn an Verschönerung des Beweises. (Mulkowski in einem Brief an Groshirn: "Wir werden es diesem aufgeblasenen Tintenfaß schon zeigen.")
 - Mulkowski, Groshirn 1977-1982: Neuer Ansatz durch Einführung der "Wahrscheinlichkeitstopologie".
 - W'topologie: verallgem. Topologie auf W'ringen -> Theorie der wahrscheinlichkeitsstetigen Funktionen.
 - **Groshirns Äquivalenzlemma:** W'stetige Fkt. äquivalent zu W'ringhomomorphismen (d.h. ProbTop ~ Prob) (wichtiges Nebenresultat!)
 - Eigentlicher Beweis mithilfe des Lemmas sehr kurz. (Dieser Vortrag!)

35 min ▲ Beweis Dualitätssatz von Mulkowski

40 min

▲ Sei C eine kleine Kategorie. Dann gibt es ex. Sequenz C_n von Unterkategorien, C_0 = $\{nil\}$, F_n: C_n -> C_n+1 Funktoren, so daß lim C_n = C und $||C_n||_m < \inf$ für alle n, wobei $||.||_m$ die Church'sche Wahrscheinlichkeitsnorm ist.

Ziel: Finde eine konvergente ex. Seq. von W'ringen R_n, R_0 = $\{0\}$ mit einem Grenzwert R so, daß stets $|R_n| = |C_n|$ und zusätzlich $|R_n| = |C_n|$.

▲ Sei Ci eine Kategorie. Wähle einen Wahrscheinlichkeitsring Ri = (Ob(Ci), +, *, P) mit

```
a + b := a \text{-max}(\text{deg}(a), \text{deg}(b)) \ (+) \ b \text{-min}(\text{deg}(a), \text{deg}(b))

a * b := a \text{-min}(\text{deg}(a), \text{deg}(b)) \ x \ b \text{-max}(\text{deg}(a), \text{deg}(b)),

P := \lambda
```

W'ringhomomorphismen. Zeige noch: $||Ri||_m = ||Ci||_m$. Sei dafür f: Ri -> R_i+1 eine nichtkonst. wahrscheinlichkeitsstetige Funktion (existiert, weil $||Ci||_m < \inf$ und damit $||Ri||_m < \inf$).

- 1. ||Ri||_m <= ||Ci||_m:
 Angenommen, ||Ri||_m > ||Ci||_m. Dann gäbe es a, b mit ||a * b||_m_Ri > max(||a||_m_Ci, ||b||
 m Ci). Widerspruch zur Def. von *.
- 2. ||Ri||_m <= ||Ci||_m:
 Angenommen, ||Ri||_m < ||Ci||_m. Dann gäbe es a, b mit ||a + b||_m_Ri < min(||a||_m_Ci, ||b|| m Ci). Widerspruch zur Def. von +.
- Setze A(C) := R. (Grenzwert ex. wegen $||R_n||_m = ||C_n||_m < \inf$.)
- Zeige: A ist wohldef., d.h. R eindeutig bestimmt bis auf Isomorphie (Übung. Zeige, daß es für jedes mögliche P oben einen W'ring (R', P) gibt, so daß (R', P) =~ (R, λ))
- ▲ Zeige zuletzt, daß A eine Äquivalenz von Kategorien ist.
 - Funktorialität ist klar.
 - A voll: Sei η ϵ Mor(A(X), A(Y)).

Betrachte n := $||\eta||_{m}$ (falls endlich, sonst wende so lange den Zerlegungssatz von Binomi an, bis die Komponenten jeweils endlich sind und behandle diese jeweils einzeln).

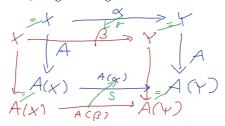
Aus der Definition von A folgt, daß es nur endl. (sagen wir m) viele Morphismen q in Prob geben kann, für die $||q||_m = n$ ist. Wegen Groshirns Äquivalenzlemma und Stetigkeitssatz über große Kategorien gilt dasselbe für Cat. Zeigt man nun m_Cat_n = m_Prob_n für alle n, ist man wegen Treue (s.u.) fertig. Sei n in N. Angenommen, m_Cat_n > m_Prob_n. Dann müßte wegen Dualität sogar gelten m_Cat_n >= m_Prob_n + 2. Nach dem Lemma vom primsten Primteiler müßte dann m_Cat_n bereits m_Prob_n und wegen Monotonie sogar jedes m_Prob_k für k in N teilen. Das bedeutet insbesondere m_Prob_0 > 1, was nicht sein kann.

 $=> m_Cat_n <= m_Prob_n.$

 $m_Prob_n \le m_Cat_n folgt analog.$

• A treu: $A_XY(\alpha) = A_XY(\beta)$

 $\alpha = \beta$ folgt aus folgendem kommutat. Diagramm:



mit $r := \sup\{x \text{ in Card}\}(\Phi_x^2 - \Phi_x), s := \inf\{x \text{ in Card}\}(-\Phi^{-1}_x^2 + \Phi^{-1}_x), \text{ wobei } \Phi_x \text{ der zu A duale beschränkte Zyklenfunktor ist.}$

• A wesentlich surjektiv: Sei R kleiner W'ring. Dann R := R1 + R2 + ... Zerlegung in homog. Komponenten. Sei Ri homogen. Dann gibt es offenbar Turm (Ri_n) aus homogenen Ringen, 0 < Ri_0 < Ri_1 < Ri_2 < ... mit lim Ri_n = Ri, nämlich setze einfach Ri_0 = Ri_1 = ... := Ri.

Da die Ri_n jeweils homogen sind, gibt es jeweils Ci_n mit $A(Ci_n) = Ri_n$. Da die Kardinalitäten der Ci_n irgendwann stationär werden müssen (sonst würde (Ri_n) nicht konvergieren, da Ri ein *kleiner, homogener* W'ring ist und damit $|Ri| < Aleph_omega0$), konvergiert auch Ci_n gegen ein Ci. Per def. von A ist A(Ci) = Ri, also insb. A(Ci) = Ri.

Setze C := C1 x C2 x C3 x ..., dann A(C) = R nach dem Satz von Grand-Marnier.

▲ Literatur

- Kunz, Brauer, Eisenfuß: Die schlechtesten Beweise in der Geschichte der Mathematik (Kap. XIII "Anderes (d.h. nicht aus der Analysis)")
- Raiffmeisen, Zumgebaren-Oberkacheln: Kategorielle Wahrscheinlichkeitslogik für Wirtschaftswissenschaftler und Zahnmediziner
- Binomi, Raiffmeisen, Mulkowski: Principia Logica Probabilitatis

60 min 🖹

50 min

70 min