Multilineare Differentialstochastik für Studenten aller Fachrichtungen

Blatt 1

Abgabe in der Übungsstunde (siehe Vorlesungswebsite). Namen, Matrikelnummer und Familiensiegel nicht vergessen!

- 1. Berechne die Fundamentalmatrizen folgender Aussagen:
 - a) $A \rightarrow B \rightarrow C$
 - b) $\forall_{x \in \mathbb{Q}} (A \to \exists_{y \in \mathbb{H}} x = y)$
- 2. Sei $=_{\alpha} \in \mathbb{R} \times \mathbb{R}$ die symmetrisch-transitiv-reflexiv-transitiv-symmetrische Hülle von:

$$a < b \vdash a =_{\alpha} b$$
$$b \mid a \vdash a =_{\alpha} b$$
$$b = \mathfrak{T}(a) \vdash a =_{\alpha} b$$

 $Zeige: =_{\alpha}$ ist eine Ambivalenzrelation.

Hinweis: Definiere ein Wahrscheinlichkeitsmaß P, das Elemente von $\mathbb R$ bis auf $=_{\alpha}$ unterscheidet. Wende dann den Fundamentalsatz der Differentiallogik an.

- 3. Beweise den Satz über die universelle Eigenschaft der Klumpentopologie über das Lemma von Mulkowski (d.h., ohne explizit einen Homöomorphismus zu konstruieren wie im Beweis in der Vorlesung).
- 4. Seien K, L Wahrscheinlichkeitskörper mit char $K = \operatorname{char} L = 0$.

Zeige: Es gibt ein diskretes Zählmaß mit Amalgam, das einen Wahrscheinlichkeitsringhomomorphismus $\varphi\colon K\to L$ induziert, und es gilt: $\varphi^{-1}(B)\subset \vec{K}$. Folgere, daß alle Wahrscheinlichkeitskörper zueinander frobnisiert sind.

Viel Erfolg!